
I. DSM Background

Simulating Deformation with a Parallel CUDA FEM Solver
Hong Lin (honglin) Ryan Lau (rwlau)

15-418 Final Project

IV. Sparse Matrix Representations V. Results

III. DSM Overview

1. Stiffness Matrices

II. DSM Stages

The Direct Stiffness Method (DSM) is a variant of Finite Element
Analysis that calculates displacements or internal stresses of an
object under load forces.

Input: 3-D mesh of 𝑁 nodes (each with 3 position coordinates)
and 𝑇 tetrahedral elements (with 4 node IDs), material constants
(𝐸, 𝜌, 𝜈), boundary conditions (e.g. gravity, external forces).

Output: Von Mises stress for each element. Each stress is a
scalar value.

Wall-clock time for unit cube mesh: 𝑁 = 3419, 𝑇 = 15923

CPU
DENSE

GPU
DENSE

GPU
EBW

Stage 0
Allocating and initializing
matrices

.189%
.1945s

(1x)

2.43%
.0751s
(2.59x)

40.0%
.0685s
(2.84x)

Stage 1
Computing local stiffness
matrices and assembling
the global stiffness matrix

.012%
.0123s

(1x)

.004%
.0001s
(9.49x)

.057%
.0001s
(12.6x)

Stage 2
Imposing boundary
conditions (gravity and
planar forces)

.001%
.0013s

(1x)

.032%
.0010s
(1.28x)

.687%
.0011s
(1.08x)

Stage 3
Solving for nodal
displacements by conjugate
gradient

99.8%
102.8s

(1x)

97.5%
3.019s
(34.1x)

59.2%
.1015s
(1013x)

Stage 4
Post-processing: computing
of element von Mises
stresses from the nodal
displacements

.002%
.0019s

(1x)

.006%
.0002s
(10.5x)

.107%
.0002s
(10.4x)

For each tetrahedron 𝑀𝑖, calculate
the local stiffness matrix 𝐾𝑖 :

𝐾𝑖 = 𝑉𝑖𝐵𝑖
𝑇𝐷𝐵𝑖

(𝐾 ∈ 𝐑12×12, 𝑉 ∈ 𝐑, 𝐷 ∈ 𝐑6×6, 𝐵𝑖 ∈ 𝐑6×12)

3. Solve for 𝒖

Solve 𝐾𝑔𝑢 = 𝐹. Since 𝐾𝑔 is positive semi-definite, we can use

the conjugate gradient method, which is iterative:

1. Compressed Sparse Row (CSR)

Assemble the global stiffness matrix
𝐾𝑔 by summing over all 𝐾𝑖, relocating

each degree of freedom (dof)
according to its node ID.

Sparsity: All nonzero elements of 𝐾𝑔
correspond to vertices and edges.
Max-degree typically 𝑂(1).

Parallelization: Computation of 𝐾𝑖
can be data-parallelized over
elements. For global summation, can
statically determine memory
addresses of nonzero entries and
synchronize using atomicAdd.

2. Ellpack (ELL)

2. Boundary Conditions

Improves data locality and access patterns by storing the
same number of elements (with padding) for each row

Store values and col_indices in column-major order to
improved coalesced memory accesses.

Compute 𝑓, the external forces at every
node.

Gravity: Compute each element’s
volume and distribute the weight to its
nodes. Can be data-parallelized;
synchronize with atomicAdd.

Planar forces: Identify the closest nodes
and distribute the force over the surface
faces. Some inter-thread dependencies
to rank and filter nodes; synchronize
using atomic operations and kernel
lifecycles.

Dirichlet points: Must fix motion of ≥ 3
nodes to eliminate rigid body modes and
make system solvable. Zero out
corresponding entries in 𝑓 and
𝐾𝑔 (except diagonal entries, which are

set to 1). Trivial to parallelize.

3. ELL-WARP [Wong, Kuhl, Darve (2015)]

Improves thread work distribution and reduces memory usage
by sorting matrix columns by length and organizing into groups
of warpSize before padding each group

Then reorganizes each group into column-major order

3. ELL-Block-WARP (EBW)

Each thread
gets 3 × 3
block of
elements.
Processes 3
rows at a time.

Every node corresponds to 3 rows and cols
in 3D space. Further aligns accesses to 𝐾𝑔
and vector 𝑝𝑖, decreasing number of
requests to all levels of caches.

4. Post-Processing

Compute element stress tensors:
𝜎𝑖 = 𝜎𝑥𝑥 , 𝜎𝑦𝑦 , 𝜎𝑧𝑧, 𝜎𝑥𝑦 , 𝜎𝑦𝑧, 𝜎𝑧𝑥 = 𝐷𝐵𝑖𝑢𝑖

Convert to von Mises stress
(scalar):

𝜎𝑣
2

=
1

2
൬

൰

𝜎𝑥𝑥 − 𝜎𝑦𝑦
2
+ 𝜎𝑦𝑦 − 𝜎𝑧𝑧

2

+ 𝜎𝑧𝑧 − 𝜎𝑥𝑥
2 + 6 𝜎𝑥𝑦

2 + 𝜎𝑦𝑧
2 + 𝜎𝑧𝑥

2

Output as a file for visualization in
e.g. Paraview:Convergence:

Iterations required scales
with 𝑂 𝑁0.389 for meshes
of our unit cube. (𝑅2 =
.999).

For 𝑁 = 51572, 𝜀 =
10−5, 1822 iterations were
required.

Factor of ≥ 10 larger for
vase mesh with same 𝑇.

• Dense methods OOM at roughly 𝑁 > 10000. Sparse methods support
mesh sizes of over 𝑁 = 1,000,000.

• Main improvements across sparse matrix implementations are due to
reduced DRAM loads

• ELL implementations have 5 − 10 × speedup over CSR. EBW shows
10 − 20% improvement over other ELL variants at large mesh sizes.

• SpMV (Sparse Matrix-Vector multiplication) implementations are
bottlenecked by warp stalls due to irregular accesses to the dense
vector. Setup times also become significant portion of the runtime and
could be further optimized.

Matrix-vector product:
97.5% of all CUDA kernel
runtime on gpu-dense,
𝑁 = 2199, 𝑇 = 9636.

IMPL
STAGE

