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II. DSM Stages

The Direct Stiffness Method (DSM) is a variant of Finite Element 
Analysis that calculates displacements or internal stresses of an 
object under load forces.

Input: 3-D mesh of 𝑁 nodes (each with 3 position coordinates) 
and 𝑇 tetrahedral elements (with 4 node IDs), material constants 
(𝐸, 𝜌, 𝜈), boundary conditions (e.g. gravity, external forces).

Output: Von Mises stress for each element. Each stress is a 
scalar value.

Wall-clock time for unit cube mesh: 𝑁 = 3419, 𝑇 = 15923
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For each tetrahedron 𝑀𝑖, calculate 
the local stiffness matrix 𝐾𝑖 :

𝐾𝑖 = 𝑉𝑖𝐵𝑖
𝑇𝐷𝐵𝑖

(𝐾 ∈ 𝐑12×12, 𝑉 ∈ 𝐑, 𝐷 ∈ 𝐑6×6, 𝐵𝑖 ∈ 𝐑6×12)

3. Solve for 𝒖

Solve 𝐾𝑔𝑢 = 𝐹. Since 𝐾𝑔 is positive semi-definite, we can use 

the conjugate gradient method, which is iterative:

1. Compressed Sparse Row (CSR)

Assemble the global stiffness matrix 
𝐾𝑔 by summing over all 𝐾𝑖, relocating 

each degree of freedom (dof) 
according to its node ID.

Sparsity: All nonzero elements of 𝐾𝑔
correspond to vertices and edges. 
Max-degree typically 𝑂(1).

Parallelization: Computation of 𝐾𝑖
can be data-parallelized over 
elements. For global summation, can 
statically determine memory 
addresses of nonzero entries and 
synchronize using atomicAdd.

2. Ellpack (ELL)

2. Boundary Conditions

Improves data locality and access patterns by storing the 
same number of elements (with padding) for each row

Store values and col_indices in column-major order to 
improved coalesced memory accesses.

Compute 𝑓, the external forces at every 
node.

Gravity: Compute each element’s 
volume and distribute the weight to its 
nodes. Can be data-parallelized; 
synchronize with atomicAdd.

Planar forces: Identify the closest nodes 
and distribute the force over the surface 
faces. Some inter-thread dependencies 
to rank and filter nodes; synchronize 
using atomic operations and kernel 
lifecycles.

Dirichlet points: Must fix motion of ≥ 3
nodes to eliminate rigid body modes and 
make system solvable. Zero out 
corresponding entries in 𝑓 and 
𝐾𝑔 (except diagonal entries, which are 

set to 1). Trivial to parallelize.

3. ELL-WARP [Wong, Kuhl, Darve (2015)]

Improves thread work distribution and reduces memory usage 
by sorting matrix columns by length and organizing into groups 
of warpSize before padding each group

Then reorganizes each group into column-major order

3. ELL-Block-WARP (EBW)

Each thread 
gets 3 × 3
block of 
elements. 
Processes 3 
rows at a time.

Every node corresponds to 3 rows and cols 
in 3D space.  Further aligns accesses to 𝐾𝑔
and vector 𝑝𝑖, decreasing number of 
requests to all levels of caches.

4. Post-Processing

Compute element stress tensors:
𝜎𝑖 = 𝜎𝑥𝑥 , 𝜎𝑦𝑦 , 𝜎𝑧𝑧, 𝜎𝑥𝑦 , 𝜎𝑦𝑧, 𝜎𝑧𝑥 = 𝐷𝐵𝑖𝑢𝑖

Convert to von Mises stress 
(scalar):
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Output as a file for visualization in 
e.g. Paraview:Convergence:

Iterations required scales 
with 𝑂 𝑁0.389 for meshes 
of our unit cube. (𝑅2 =
.999).

For 𝑁 = 51572, 𝜀 =
10−5, 1822 iterations were 
required.

Factor of ≥ 10 larger for 
vase mesh with same 𝑇.

• Dense methods OOM at roughly 𝑁 > 10000. Sparse methods support 
mesh sizes of over 𝑁 = 1,000,000.

• Main improvements across sparse matrix implementations are due to 
reduced DRAM loads

• ELL implementations have 5 − 10 × speedup over CSR. EBW shows 
10 − 20% improvement over other ELL variants at large mesh sizes.

• SpMV (Sparse Matrix-Vector multiplication) implementations are 
bottlenecked by warp stalls due to irregular accesses to the dense 
vector. Setup times also become significant portion of the runtime and 
could be further optimized.

Matrix-vector product:
97.5% of all CUDA kernel 
runtime on gpu-dense, 
𝑁 = 2199, 𝑇 = 9636.
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