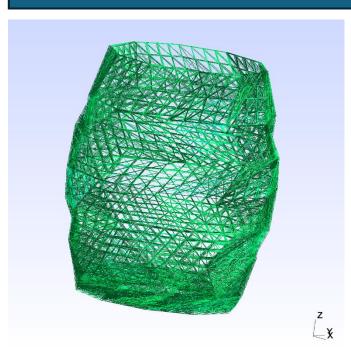
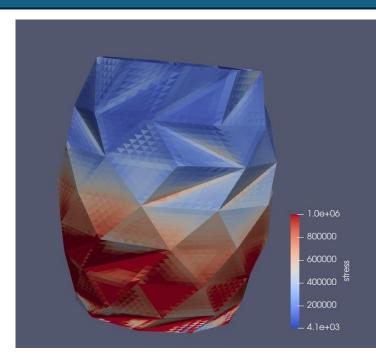
Simulating Deformation with a Parallel CUDA FEM Solver

Hong Lin (honglin) Ryan Lau (rwlau) 15-418 Final Project

I. DSM Background





The **Direct Stiffness Method (DSM)** is a variant of Finite Element Analysis that calculates displacements or internal stresses of an object under load forces.

Input: 3-D mesh of *N* nodes (each with 3 position coordinates) and T tetrahedral elements (with 4 node IDs), material constants (E, ρ, ν) , boundary conditions (e.g. gravity, external forces).

Output: Von Mises stress for each element. Each stress is a scalar value.

II. DSM Stages

Wall-clock time for unit cube mesh: $N=3419$, $T=15923$				
STAGE	CPU	GPU	GPU	
	DENSE	DENSE	EBW	
Stage 0 Allocating and initializing matrices	.189% .1945s (1x)	2.43% .0751s (2.59x)	40.0% .0685s (2.84x)	
Stage 1 Computing local stiffness matrices and assembling the global stiffness matrix	.012%	.004%	.057%	
	.0123s	.0001s	.0001s	
	(1x)	(9.49x)	(12.6x)	
Stage 2 Imposing boundary conditions (gravity and planar forces)	.001%	.032%	.687%	
	.0013s	.0010s	.0011s	
	(1x)	(1.28x)	(1.08x)	
Stage 3 Solving for nodal displacements by conjugate gradient	99.8% 102.8s (1x)	97.5% 3.019s (34.1x)	59.2% .1015s (1013x)	
Stage 4 Post-processing: computing of element von Mises stresses from the nodal displacements	.002%	.006%	.107%	
	.0019s	.0002s	.0002s	
	(1x)	(10.5x)	(10.4x)	

1. Stiffness Matrices

For each tetrahedron M_i , calculate the local stiffness matrix K_i :

$$K_i = V_i B_i^T D B_i$$

$$(K \in \mathbf{R}^{12 \times 12}, \ V \in \mathbf{R}, \ D \in \mathbf{R}^{6 \times 6}, \ B_i \in \mathbf{R}^{6 \times 12})$$

Assemble the global stiffness matrix K_a by summing over all K_i , relocating each degree of freedom (dof) according to its node ID.

Sparsity: All nonzero elements of K_a correspond to vertices and edges. Max-degree typically O(1).

Parallelization: Computation of K_i can be data-parallelized over elements. For global summation, can statically determine memory addresses of nonzero entries and synchronize using atomicAdd.

2. Boundary Conditions

III. DSM Overview

Compute f, the external forces at every

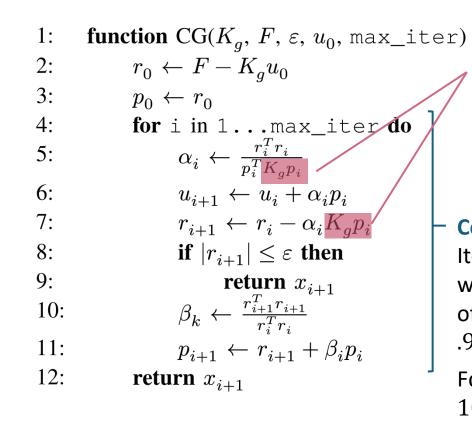
Gravity: Compute each element's volume and distribute the weight to its nodes. Can be data-parallelized; synchronize with atomicAdd.

Planar forces: Identify the closest nodes and distribute the force over the surface faces. Some inter-thread dependencies to rank and filter nodes; synchronize using atomic operations and kernel lifecycles.

Dirichlet points: Must fix motion of ≥ 3 nodes to eliminate rigid body modes and make system solvable. Zero out corresponding entries in f and K_a (except diagonal entries, which are set to 1). Trivial to parallelize.

3. Solve for u

Solve $K_q u = F$. Since K_q is **positive semi-definite**, we can use the **conjugate gradient** method, which is iterative:



Matrix-vector product:

97.5% of all CUDA kernel runtime on gpu-dense, N = 2199, T = 9636.

Convergence:

Iterations required scales with $O(N^{0.389})$ for meshes of our unit cube. $(R^2 =$

For N = 51572, $\varepsilon =$ 10^{-5} , 1822 iterations were required.

Factor of ≥ 10 larger for vase mesh with same T.

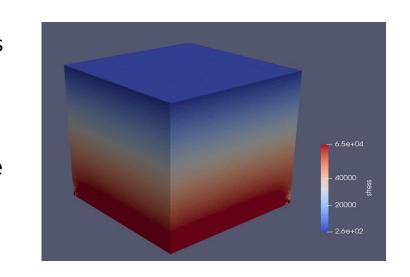
4. Post-Processing

Compute element stress tensors: $\sigma_i = (\sigma_{xx}, \sigma_{yy}, \sigma_{zz}, \sigma_{xy}, \sigma_{yz}, \sigma_{zx}) = DB_i u_i$

Convert to von Mises stress (scalar):

$$\sigma_{v}^{2} = \frac{1}{2} \left(\left(\sigma_{xx} - \sigma_{yy} \right)^{2} + \left(\sigma_{yy} - \sigma_{zz} \right)^{2} + \left(\sigma_{zz} - \sigma_{xx} \right)^{2} + 6 \left(\sigma_{xy}^{2} + \sigma_{yz}^{2} + \sigma_{zx}^{2} \right) \right)$$

Output as a file for visualization in e.g. Paraview:



IV. Sparse Matrix Representations

1. Compressed Sparse Row (CSR)

2		4	
	6		
		10	
12			14

Matrix

S

Dim

(N,3)

(T,4)

(T, 12, 12)

(3N, 3N)

(N,*)

(*,)

(3N,)

(3N,)

Description

Node

coordinates

Tetrahedron

Node ID's

Local

stiffness

matrices

Global

stiffness

matrix

cency sets

List of surface

faces in th

mesh

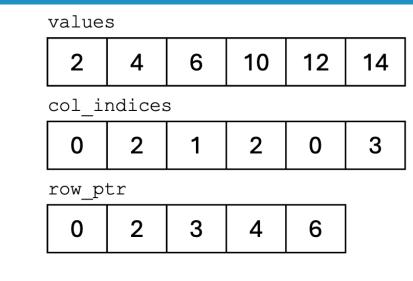
External force

Node

displacements

adja

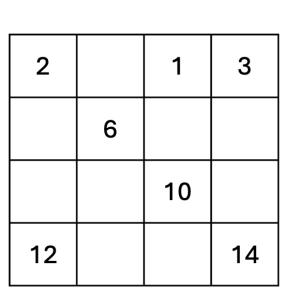
Node

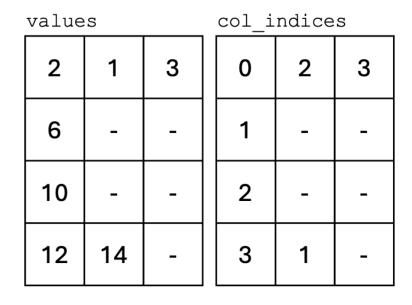


2. Ellpack (ELL)

Improves data locality and access patterns by storing the same number of elements (with padding) for each row

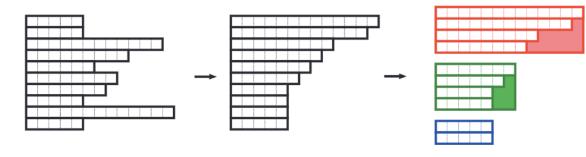
Store values and col indices in column-major order to improved coalesced memory accesses.





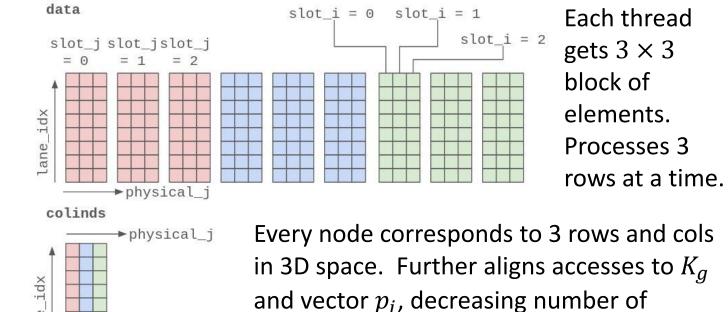
3. ELL-WARP [Wong, Kuhl, Darve (2015)]

Improves thread work distribution and reduces memory usage by sorting matrix columns by length and organizing into groups of warpSize before padding each group



Then reorganizes each group into column-major order

3. ELL-Block-WARP (EBW)



requests to all levels of caches.

V. Results

- **Dense methods OOM** at roughly N > 10000. Sparse methods support mesh sizes of over N = 1,000,000.
- Main improvements across sparse matrix implementations are due to reduced DRAM loads
- ELL implementations have $5-10 \times \text{speedup over CSR. EBW shows}$ 10-20% improvement over other ELL variants at large mesh sizes.
- SpMV (Sparse Matrix-Vector multiplication) implementations are bottlenecked by warp stalls due to irregular accesses to the dense vector. Setup times also become significant portion of the runtime and could be further optimized.

