Carnegie
Mellon
University

. DSM Background

— 1.0e+06

L 800000

600000 ,

173

9

I:aooooo i
™ 200000

—4.1e+03

The Direct Stiffness Method (DSM) is a variant of Finite Element
Analysis that calculates displacements or internal stresses of an
object under load forces.

Input: 3-D mesh of N nodes (each with 3 position coordinates)
and T tetrahedral elements (with 4 node IDs), material constants
(E, p,v), boundary conditions (e.g. gravity, external forces).

Output: Von Mises stress for each element. Each stress is a
scalar value.

Ill. DSM Stages

Wall-clock time for unit cube mesh: N = 3419, T = 15923

CPU
DENSE

Stage 0 A189% 2.43% 40.0%
Allocating and initializing 19455 0751s 06855
matrices (1x) (2.59x) (2.84x)
Stage 1 012% .004% .057%
Computing local stiffness ’ ’)
matrices and assembling .0123s .0001s .0001s
(1x) (9.49x) (12.6x)

the global stiffness matrix

Stage 2

Imposing boundary
conditions (gravity and
planar forces)

.001% .032% .687%

.0013s .0010s .0011s
(1x) (1.28x) (1.08x)

Stage 3

o for nodal 99.8% 97.5% 59.2%
displacements by conjugate 102.8s 3.019s -1015s

gradient (1x) (34.1x) (1013x)
Stage 4

Post-processing: computing .002% .006% .107%
of element von Mises .0019s .0002s .0002s

stresses from the nodal (1x) (10.5x) (10.4x)

displacements

Matrix Dim Description
R (N,3) Node
coordinates
M (T,4) Tetrahedron
Node ID’s
K (T,12,12) Local
stiffness
matrices
K p (3N,3N) Global
stiffness
matrix
A (N, *) Node adja-
cency sets
S (%,) List of surface
faces in the
mesh
F (3N,) | External forces
u (3N,) Node
displacements

1. Compressed Sparse Row (CSR)

values

2

4

10

12

14

Ryan Lau (rwlau)

15-418 Final Project

1. Stiffness Matrices 2. Boundary Conditions 3. Solve for u 4. Post-Processing

For each tetrahedron M;, calculate
the local stiffness matrix K; :

- T
K; = V,BT DB,
(K € R12X12, = R, D e R6X6, Bi € R6><12)

Assemble the global stiffness matrix
K, by summing over all K;, relocating
each degree of freedom (dof)
according to its node ID.

Sparsity: All nonzero elements of K,

correspond to vertices and edges.
Max-degree typically O(1).

Parallelization: Computation of K;
can be data-parallelized over
elements. For global summation, can
statically determine memory
addresses of nonzero entries and
synchronize using atomicAdd.

Simulating Deformation with a Parallel CUDA FEM Solver

Hong Lin (honglin)

l1l. DSM Overview

Compute f, the external forces at every
node.

Gravity: Compute each element’s
volume and distribute the weight to its
nodes. Can be data-parallelized;
synchronize with atomicAdd.

Planar forces: Identify the closest nodes
and distribute the force over the surface
faces. Some inter-thread dependencies
to rank and filter nodes; synchronize
using atomic operations and kernel
lifecycles.

Dirichlet points: Must fix motion of > 3
nodes to eliminate rigid body modes and
make system solvable. Zero out
corresponding entries in f and

K, (except diagonal entries, which are
set to 1). Trivial to parallelize.

V. Sparse Matrix Representations

2 4

col indices

of warpSize before padding each group

0 2 1 2 0 3
row ptr
0 2 3 4 6

Then reorganizes each group into column-major order

e

Improves data locality and access patterns by storing the

same number of elements (with padding) for each row

Solve K u = F. Since K, is positive semi-definite, we can use
the conjugate gradient method, which is iterative:

e A AN Sl > e

[
<

—
Do

3. ELL-Block-WARP (EBW)

function CG(K, F, ¢, uy, max_iter)

Ty < F— K ug

Py < 7o
for 1 in 1...max _ite
Q4 T
¢ pz"TKgp'i

Tip1 < 1 — oKD,
if |, ;| < e then
return x,

T

/8 Tit1Ti41

k — —7F
riT,

Piy1 < Tip1 + Bib
return x,

Improves thread work distribution and reduces memory usage
6 | 10 | 12 | 14 by sorting matrix columns by length and organizing into groups

Matrix-vector product:
97.5% of all CUDA kernel
runtime on gpu-dense,
N = 2199, T = 9636.

— Convergence:
Iterations required scales
with O (N°-38%) for meshes
of our unit cube. (R? =
.999).

For N = 51572, ¢ =
1075, 1822 iterations were
required.

Factor of > 10 larger for
vase mesh with same T.

Compute element stress tensors:

0; = (O-xxr Oyy, 02z, Oxy, Oygz, O-zx) = DB;y;

Convert to von Mises stress

(scalar):
o
1 2
=5 ((Gxx - ny) + (ny — azz)

+ (0,5 — Oyy)? +-6(o§§ + 0y, +—o§;))

2

Output as a file for visualization in
e.g. Paraview:

V. Results

reduced DRAM loads

3. ELL-WARP [Wong, Kuhl, Darve (2015)] * Dense methods OOM at roughly N > 10000. Sparse methods support
mesh sizes of over N = 1,000,000.

* Main improvements across sparse matrix implementations are due to

 ELL implementations have 5 — 10 X speedup over CSR. EBW shows
10 — 20% improvement over other ELL variants at large mesh sizes.

 SpMV (Sparse Matrix-Vector multiplication) implementations are
bottlenecked by warp stalls due to irregular accesses to the dense
vector. Setup times also become significant portion of the runtime and
could be further optimized.

Conjugate Gradient Throughput Comparison

. . . . 41
Store values and col indices in column-major orderto data slot_|i -0 slori=1 Each thread 10
improved coalesced memory accesses. slot_j slot_jslot_j slott =2
g y 2§ =9 8 gets 3 X 3 —
~
values col indices 4 block of § 103
x elements. =
2 1| 3 2 | 1|3 0| 2|3 A E
0 Processes 3 =
©
— 1 o0
5 5])])) T rows at a time. = 102,
colinds ﬁ
—vphysical j Every node corresponds to 3 rows and cols
A
10 10| - - 2) } 3 in 3D space. Further aligns accesses to K, 1
3 . 10"}
19 14 12 | 14 3] o and vector p;, decreasing number of I
)) g requests to all levels of caches.

104
Number of Nodes

—— GPU Dense

—— GPU CSR
GPU ELL

—— GPU ELL Warp

—— GPU ELL Block

—— CPU Dense

