A Parallel CUDA FEM Solver

Hong Lin
honglin@andrew.cmu.edu

— 6.5e+04

40000

20000

—2.6e+02

Abstract—The Finite Element Method (FEM) is a commonly
used technique in engineering and physics to solve complex
partial differential equations numerically by splitting the input
domain into smaller, discrete elements. However, most modern
FEM solvers like OpenEMS and Autodesk FEA do not support
GPU acceleration. In this project, we aim to develop a parallel
CUDA implementation of the Direct Stiffness Method (DSM), a
variant of FEM used for calculating the internal stresses of an
object under external load forces. In particular, we focused on
exploring and optimizing various sparse matrix storage meth-
ods and sparse matrix-vector multiplication (SpMYV) techniques
while solving for the mesh node displacements via the conjugate
gradient method.

I. BACKGGROUND

The Finite Element Method (FEM) is a powerful numerical
technique for approximating solutions to partial differential
equations, with widespread applications in many fields like
chemical engineering, geophysics and computer graphics.
Most FEMs work by breaking down the domain into discrete
elements. Local properties are calculated for each element
before being assembled into a global system of equations.

The Direct Stiffness Method (DSM) is one variant of the
FEM used in structural engineering that calculates the internal
stresses within an object due to external load forces. In 3
dimensions, an object can be discretized as a mesh consisting
of node points and tetrahedral elements each represented as
a set of 4 node points.

Our implementation of DSM takes in a tetrahedral mesh
representing a solid object, forces acting on the mesh, material
properties of the object (Young’s modulus F, Poisson ratio
v and material density p) and computes the von Mises stress
output experienced by each element in the mesh. The mesh
is specified by a .msh file (produced by a gmsh application

Ryan Lau
rwlau@andrew.cmu.edu

— 1.0e+06

+— 800000

600000

2
i}

400000

= 200000

—4.1e+03

from an .stl specification of the object), and the output
is a comma-separated list of stresses that can, with simple
postprocessing, be consumed by visualization software such
as ParaView.

The key data structures in our program are various matrices:

TABLE I: MATRIX AND VECTOR VARIABLES INVOLVED IN THE DSM ALGO-

RITHM.
Matrix | Dimension Description
R (N,3) Position of each node in the mesh
M (T,4) IDs of the nodes of each tetrahedron
VN (T,4,4) Gradients of each tetrahedron’s shape functions

K (7,12,12) | Local stiffness matrices. Each entry corresponds

to a node and coordinate of the tetrahedron.

Global stiffness matrix. Sum over all local stiff-
ness matrices (at the corresponding nodes)

K (3N,3N)

(N, *) Adjacency sets of each node in the mesh
S (*,) List of surface faces in the mesh. A surface face
is a face that belongs to exactly one element in
the mesh.
F (3N,) External forces, such as gravity and contact
forces.
U (3N,) Node displacements for each node and coordinate

Here, we shall present the calculations involved for each main
step of the DSM algorithm and discuss their challenges and
opportunities for parallelism.

A. Calculating the element local stiffness matrices

The first step of the algorithm involves calculating the local
stiffness matrix K for every element of the mesh. K is a
matrix that describes how the displacement of each node’s

mailto:honglin@andrew.cmu.edu
mailto:rwlau@andrew.cmu.edu

degree of freedom is affected by the forces applied to nodes in
the element. Elements of K thus have units of force per unit
length. Under the assumptions of small displacements and a
homogeneous material, for some tetrahedral element T with
nodes [n,,n,,n.,n4, K; can be approximated as

K; = ViBiTDBi (1)
where V,

7 is the volume of the element, B; is the strain
displacement matrix (6 x 12) and D is the material matrix
(6 x 6). Both V; and B, are calculated or constructed using
the coordinates of the nodes. D is a constant for all tetrahedral
elements and is derived from E and v. Full mathematical
descriptions of V,, B;, D can be found in [1] and [2].

Since the matrices involved are of fixed and relatively small
sizes, they can be stored and accessed simply as dense 2D
arrays. Additionally, the local stiffness matrix calculations are
independent from those of any other element, and can hence
be data-parallelized.

B. Assembling the global stiffness matrix

The global stiffness matrix K, describes how the displacement
of all degrees of freedom relates to forces applied on all nodes.
Each entry in K is the sum of elements of corresponding
degrees of freedom in all local stiffness matrices. In other
words, for each vertex and edge of each tetrahedron, there
are 3 x 3 elements that have to be updated, which may be a
source of locality.

We note that assembling this global stiffness matrix would
require some form of synchronization. Since vertices and
edges can be shared by several tetrahedra, parallelizing over
tetrahedra (as a continuation of computing the element local
stiffness matrix, to avoid materializing every single local
stiffness matrix) may lead to multiple threads attempting to
update the same element of the matrix.

Fortunately, as addition is commutative and associative, sim-
ply performing element-wise atomic additions is sufficient as
a starting point for correctness (notwithstanding the properties
of floating-point arithmetic).

The next problem becomes the representation of the global
stiffness matrix. The size of K, scales quadratically with
the number of nodes but remains sparse since only elements
whose rows and columns correspond to nodes that share an
element will be non-zero. If we were to use a sparse repre-
sentation of the matrix, then this introduces a nontrivial time
to determine which entries are nonzero (i.e. computing the
adjacency set of the mesh), which may have to be parallelized.
C. Applying boundary conditions
The final global system takes the form

Ku=F (2)
where u is the vector of unknown nodal displacements and
F' is a vector of the applied external forces.

Firstly, we note that the above linear equation is underde-

termined. There are the rigid body modes of freedom (i.e.
translations or rotations of the whole object) that do not result
in any internal deformation. It thus becomes necessary to fix
the motion of at least 3 nodes in the mesh in order for (2)
to be solvable. These are the Dirichlet boundary conditions,
achieved by by zeroing out the rows and columns of K,
(except the diagonals, which should be set to unity) and
corresponding entries in F' [3].

TABLE II: CODE FOR SETTING DIRICHLET BOUNDARY CONDITIONS

1 function DiricHLer(K, F, fixed_node_idxs)

2 for node_idx in fixed_node_idxs do

3 for dof in 0...2 do

4: dof_index ¢ node_idxx 3 +dof
5: K[dof_idx, :1 «+ 0

6: K[:, dof_idx] «+ 0

7 K[dof_idx, dof_idx] « 1

8 Fldof_idx] «+ 0

In addition, we want to study the deformation of the mesh
under various types of forces:
* Gravity, which acts on every node in the mesh based on
the mass of its adjoining elements; and
* Contact forces (e.g. the normal force of a cube resting on
a surface), which act on the closest nodes with respect
to a given direction, and is distributed based on the
oriented area of the adjoining surface faces.

Since gravity has to be computed for every node, its workload
is similar to computing the local stiffness matrix for each
element.

The more challenging task is determining which nodes to
compute the contact force. At the minimum, there are some
dependencies between nodes when determining which nodes
are closest to the direction the force is applied. Subsequently,
we have to compute the faces to apply the force on and then
distribute the force over every face. We can expect a large
number of faces to not experience this force so there is some
further sparsity in the problem.

D. Solving the global system

Since K is a symmetric positive semi-definite matrix, we
can solve for u via the conjugate gradient (CG) method [4].

The CG method involves evaluating multiple iterations of the
matrix vector product K p;. For large meshes, the size and
sparsity of K poses significant memory usage and computa-
tional challenges, making it critical to design efficient parallel
matrix product algorithms that exploit the sparsity and locality
of K g On the smallest scales, K 9 is dense (as each edge/
vertex contributes 3 x 3 nonzero elements), but on a slightly
larger scale, K, becomes sparse.

TABLE III: CODE FOR SOLVING u ITERATIVELY USING THE CONJUGATE GRA-
DIENT METHOD

1 function CG(K, F, €, up, max_iter)

2 ro < F— Ky,

3 Dy < To

4 for iinl...max_iter do
. TlT’I‘l

> & & i Kyp;

6 Uiy & U+ oyp;

7 Tyl & 1 — oK p;

8 if |7, 1| < e then

9 retlTlrn Tigq

1

0: ﬁk — Tﬁ»é_:rz*rl

rir;
11: Pip1 < Tip1 + Bip;
12: return z,

In the largest meshes we tested on, we observed that several
thousand iterations were needed for CG to converge. This
means that CG should likely occupy the bulk of the runtime
and be the priority to optimize.

E. Postprocessing

After solving for u, the final step is to compute the internal
stresses within each element. This postprocessing phase allows
us to visualize the regions of high stress and potential failure
points of the object. For linear elastic materials, the internal
stress tensor is given by

S
8
8

<
<

SIS
N
™

8
<

= DB;u, (3)

Q qQ
<
N

N
8

where u; is the vector of nodal displacements for the element.
To evaluate the material yield critieria, we convert the stress
tensor into a scalar using the von Mises stress o,

1 2 2
0721 = 5 ((Ua:ac - ayy) + (Uyy - azz) + (Uzz - sz)2 —i(_4)
6(02, + 0% +0%))

We then save o, alongside each element in a .vtu file for
stress visualization in Paraview. Similar to the local stiffness
matrix step, each element’s o, is independent and can be data-
parallelized.

II. ApproacH

Due to the large number of similar, simple arithmetic opera-
tions that can be performed, we decided to target CUDA as
our platform of parallelism. We used the same CUDA API as
Assignment 2, which extends a subset of C++. We targeted
the GHC clusters, which are equipped with NVIDIA RTX
2080 GPUs.

We started by creating a script to generate tetrahedral meshes
using GMSH. The script converts .stl files to .msh files
that contain a list of coordinates of each node and a mapping
of nodes to tetrahedrons. For the purposes of benchmarking

our serial and parallel algorithms, we generated meshes of a
unit cube at varying levels of mesh sizes.

To consume our output, we wrote a script to convert our
output (comma-separated values of the von Mises stress)
into .vtu files which can be consumed by ParaView, a
visualization tool.

Our baseline serial algorithm parses the mesh and stores a list
of nodes as triplets of 3D coordinates and a list of tetrahedrons
as 4-tuples of node indices. Local stiffness matrices for each
tetrahedral element are calculated sequentially and added to
a dense global stiffness matrix represented as a 2D array.
The conjugate gradient method uses a simple iterative matrix-
vector multiplication algorithm, looping through the rows and
columns of K to calculate the dot products of each row with
p,;. However, we quickly ran into runtimes in the order of
minutes with a mesh size of N > 3419.

A. Dense matrix

A simple initial improvement over the serial implementation
would be to parallelize the dense matrix vector multiplication.
Since multiple threads may update the same element of
the global stiffness matrix during combination of the local
stiffness matrices, we use atomic add operations to prevent
possible race conditions.

The dense matrix vector multiplication operation may be
parallelized over rows, where each thread calculates the
dot product of a row of K, with F. To reduce memory
loads, threads in a thread block load in elements from F'
blockSize at a time into shared memory before accumu-
lating their dot products.

However, this can lead to uncoalesced memory access pat-
terns. To avoid this, for larger K go We instead have each thread
block calculate the dot product over a single row. Each thread
starts at the threadIdxth element of the row and calculates
the cumulative partial product with every other blockSize
element. The partial dot products are then combined using
parallel range sums.

Unfortunately, storing all elements of K, quickly leads to
memory issues for meshes larger than a few thousand elements
and multiplying across the full matrix is incredibly computa-
tionally inefficient.

B. Compressed Sparse Row (CSR) matrix

In most mesh based methods, the global matrices are typically
large and sparse. For instance, our most complicated mesh,
the car mesh, has N = 12,567 and T' = 68, 388. However, the
maximum degree over all nodes is J = 82, as each node only
shares tetrahedrons with a small number of other nodes. As
nonzero entries only occur at edges in the mesh, this upper-
bounds the number of nonzero entries by 3N x 3J.

One of the most common sparse matrix formats is the Com-

pressed Sparse Row (CSR). Elements are stored as three 1D
arrays:
* values: a list of non-zero entries in row-major order
e col_indices: the column index of each element in
the values array
* row_ptr: index in the values array where each row
starts

We note that with a dense matrix, we run out of memory on
the RTX 2080 at N < 12,342, but with CSR, we are still
able to process matrices as large as N > 229, 515.

In the sparse-matrix vector (SpMV) kernel for CSR, we allo-
cated one CUDA thread to a single row of the input matrix,
producing one entry in the result vector. Hence, there is no
need for synchronization (other than waiting for all blocks to
complete, which is handled by the CUDA runtime).

C. Ellpack matrix

Ellpack is another sparse matrix format that improves on the
data locality and regularity of access patterns of CSR by
storing the same number of elements el 1packCols for each
row. Ellpack organizes the matrix into two dense arrays:

* values: A 2D array where each row stores the nonzero
entries of the corresponding matrix row. The value on
the diagonal is always stored as the first element in its
row and the rest of the non-zero entries are stored in
order of column index.

If a row has fewer than ellpackCols non-zero en-
tires, the remaining entires are padded with a dummy
value.

* col_indices: A 2D array storing the column index
for each entry in values.

Since the connectivity of the nodes can be deduced from
the mesh input beforehand, during the setup phase of the
solver, we compute the adjacency sets for each node, take
ellpackCols as the maximum size of the adjacency sets
times 3, and populate col_indices according to the adja-
cency sets. Threads can then use atomic add operations to
update the matrix when assembling the global stiffness matrix.

In the SpMV kernel for Ellpack, we allocated one CUDA
thread to a single row of the input matrix as well, produc-
ing one entry in the result vector. Storing values and
col_indices in column-major order optimizes global
memory access patterns (unit stride over values and
col_indices), improving throughput (as measured by iter-
ations of conjugate gradient per second) by about 33% (as
compared to row-major), i.e. the stride of the vertical-axis is
1, and the stride of the horizontal-axis is the number of rows
3N.

D. ELL-WARP

The number of neighboring nodes may differ significantly
across the mesh. For example, nodes at the faces and corners
will naturally have much fewer neighboring nodes that share
tetrahedral elements. As such, some threads in a warp may

end up processing rows in K, with more padding elements
than others, resulting in wasted work.

An approach by Wong, Kuhl and Darve in 2015 [5] known as
ELL-WARP attempts to mitigate this. They first sort the nodes
according to their connectivity degree before constructing K.
Then, by grouping contiguous groups of warpSize rows
together, rows only have to be padded up to the maximum
length of rows within the group. This ensures that each warp
gets a group of rows that have similar amounts of padding
and minimizes the total number of padding columns that have
to be stored. Finally, we store the permutation vector (and
inverse permutation vector) mapping the logical ¢-indices (i)
and the physical i-indices (ip), so that in SpMV, we will
know which element of the vector to read from.

=

Fig. 2: With a warp size of 4 for this example, Ellpack rows are sorted by
length, split into groups of warp size, and padded to the maximum length of
the group.

Fig. 3: Rows within a group are reordered into column major order

Similarly, we optimize for coalesced memory access patterns
by storing each group of rows in column-major order. Specif-
ically, from the slowest-varying to the fastest-varying, the
memory is laid out as follows:

1) warp_idx = |ip/ warp_size]

2) jp = ‘Physical’ j-index in Ellpack (from O to

warp_lengths [warp_idx])
3) Lane index = ip mod warp_size

The SpMV kernel for ELL-WARP is very similar to Ellpack,
with one CUDA thread responsible for one row of the input
matrix, but now the iteration length for each warp is dependent
on warp_lengths [warp_idx].

E. EBW

The final optimization we made came from the observation
that all entries in the matrix occur in 3 x 3 blocks, due to
the 3-D space that we operate in. In ELL-WARP, while there
is some theoretical locality in what each group of 3 adjacent
threads may access (since they will access the same entries in
the input vector), there are too many such different, randomly-
distributed groups in a matrix for any coalescing of memory
accesses to occur.

data slot_i =0 slot_i=1
slot _J slot]slot j slot_i = 2
=0 29 =5
x]
T
& (=]
D | |
= | |
© -
=
—physical_j
colinds
—mbphysical_j
x]
o
-a‘ | |
o ||
c | |
©
5 | |

Fig. 4: EBW Memory Layout for a single warp. Each color corresponds to
a column of a warp in the colinds matrix. (Here, warp_size = 8 for
illustration purposes.) Each element in the colinds matrix maps to 3 x 3
elements in the data matrix. Both matrices are stored in column-major order
according to the above illustration; the slot_i and slot_7j values are
obtained by taking the modulus of the logical 7 and j indices with respect to
the block size (3 x 3), but have a higher stride than 1ane_idx to facilitate
memory access coalescing.

In EBW (ELL-Block-Warp), we divide each row of the matrix
into 3 x 3 blocks (implemented as template parameters). In
the SpMV kernel, each thread is responsible for one row of
blocks (i.e. a row of 3 elements). The memory layout, from
slowest-varying to fastest-varying is now given by:

1) warp_idx = [ip/ warp_size]

2) ‘Physical’ j-index in Ellpack (from O to

warp_lengths [warp_idx])

CPU Dense Time Breakdown by Phase

2100
< 10 I I I I I I
0

>b"

setup
update_global k
update_boundary

solve_u

postprocess

N nmh(r of Nodes

Fig. 6: Percentage of CPU runtime by phase. setup involves the parsing of
the mesh file and the initialization of Kg. update_global_k calculates
the local stiffness matrices for each tetrahedron and addes them to K.
update_boundary generates the force vector ' and applies the Dirichlet
boundary conditions. solve_u runs CG to find the displacements u.
postprocessing calculates the element von Mises stresses and outputs
them as a .csv.

To motivate our parallel algorithm, we started by benchmark-
ing the wall clock times of each phase of the CPU dense
algorithm across various mesh sizes of a unit cube. From
Fig. 5, we can see that the total runtime increases rapidly with
mesh size and past ~ 4000 nodes, K, was no longer able to
be fully stored in memory.

Further breaking down the runtime by phase in Fig. 6, the
algorithm becomes dominated by the conjugate gradient step
(solve_u). With reference to dense matrix representations
on GPU, the matrix multiplication kernel took as much as
97.5% of the runtime on the largest possible workload.

TABLE IV: CUDA KEeRNEL StATISTICS FOR [N = 2199.

3)
4)
5)

jpmod3
ip mOd 3
Lane index = ip mod warp_size

Each thread therefore computes 3 independent entries in the
result vector. Similarly, there is no need for synchronization
(besides waiting for all blocks to complete).

III. REsuLTs

CPU Dense total runtime

100
Z %0
o
2 60
)
E -
£ 20 -
//////
. -
0 50001000 1500 2000 2500 3000 3500

Number of nodes

Fig. 5: CPU serial implementation run time over different unit cube mesh
sizes

Time (%) | Total Time (ms) Kernel Description
97.5 1289.50 Dense matrix-dense vector product
1.4 18.67 General dense-vector addition: ax + by
1.0 13.77 Dense-vector dot product
0.0 40 Compute local stifftness and assemble

global stiffness

0.0 11 Apply contact forces
0.0 .03 Apply gravity

This supports the hypothesis that focusing on matrix storage
and multiplication optimizations involved in this step would
result in the most significant improvements to performance.
We therefore use the throughput (number of CG iterations
per second) as a proxy metric for benchmarking SpMV
performance.

Conjugate Gradient Runtime Comparison

10" GPU Dense

GPU CSR
10! / GPU ELL
/ GPU ELL Warp
g GPU ELL Block
—— CPU Dense

10" /

Runtime (s)

107! —

10° 10* 10°
Number of Nodes
Fig. 7: Log-log plot of runtime against number of nodes for each matrix
representation

Conjugate Gradient Throughput Comparison
104 == ,, GPU Dense
GPU CSR
GPU ELL
GPU ELL Warp
GPU ELL Block
—— CPU Dense

10! N
10° 10* 10°
Number of Nodes

Fig. 8: Log-log plot of throughput (CG iters/sec) against number of nodes
for each matrix representation

We then compared the CG runtimes and throughputs of the
serial algorithm with each GPU matrix storage mode. Each
GPU SpMV kernel was run with a block size of 1024. From
Fig. 7, the GPU dense matrix experienced a 10 to 34 times
throughput improvement over the serial implementation from
a node size of 463 to 3419.

CSR has a 2 to 42 times throughput improvement over GPU
dense as the number of nodes increases from 463 to 7348.
Incidentally, the amount of speedup is roughly proportional
to the mesh size, which is consistent with the improvement
from a O(n?) dense matrix vector multiplication algorithm
to a O(n) sparse one.

The throughput of the CSR and ELL implementations remains
roughly comparable until a node size of 7348, after which
ELL begins to significantly outperform CSR. In the log-log
plot of Fig. 8, this is marked by a ‘kink’ or drop in the
gradient of throughput against number of nodes for CSR. A
similar falloff in efficiency occurs later at a mesh size of N =
51572 for the ELL matrices. We observe that the number of
CSR L1 misses rises markedly when moving from the N =
4759 to N = 7348 meshes, suggesting that at this threshold,
K, and p;, may no longer fit within the L1 cache, resulting in
cache thrashing as multiple threads access different locations
of Kg and p;. On the other hand, the ELL matrices have
more regular alignments of data. By storing their elements in
column major order, there is a higher proportion of coalesced
memory accesses and greater spatial locality of between
threads that reduces the chances of cache pollution. As such,
the limitations of cache thrashing only become apparent at
much larger mesh sizes. A more detailed analysis of the
memory access patterns will be conducted in the next section.

Between each ELL implementation, ELL-WARP offers a 5 —
10% speedup over base ELL, and EBW offers a further 5 —
15% speedup over ELL-WARP at the largest mesh sizes.

GPU Modes - Setup Time Comparison

GPU Dense

GPU CSR

GPU ELL /
1’ GPU ELL Warp %

GPU ELL Block y

Setup Time (s)
AN

10° 10" 10°
Number of Nodes

Fig. 9: Setup times of each GPU matrix mode

Total Time Comparison

— GPU Dense

—— GPUCSR
GPU ELL

—— GPU ELL Warp

—— GPU ELL Block

H
=

Total Time (s)
2

107!

10° 107 10°
Number of Nodes

Fig. 10: Total algorithm runtimes of each GPU matrix modes

The EBW groupings of matrix elements into 3 x 3 blocks
of node coordinates also reduces the size of the logical
index mappings by 9 times. This is reflected in a noticeable
reduction in setup times over the other ELL implementations,
further improving runtimes for the overall algorithm.

A. Analysis of Bottlenecks
We used the ncu tool to profile the bottlenecks of the

program.

TABLE V: THROUGHPUT OF VARIOUS COMPONENTS

Matrix N Compute | LI/TEX L2 DRAM
GPU-Dense | 7.3K 31.37 26.42 43.54 | 80.00
CSR 7.3K 3.44 32.63 21.33 | 73.21
ELLPACK | 7.3K 11.24 28.11 16.81 | 43.89
ELLWARP | 7.3K 9.63 31.12 16.99 | 39.89
EBW 7.3K 7.62 71.57 12.70 | 21.50
CSR 229K 1.78 9.55 20.47 | 69.72
ELLPACK | 229K 15.21 23.07 31.00 | 74.90
ELLWARP | 229K 13.06 22.31 31.50 | 70.70
EBW 229K 7.31 39.83 3246 | 83.57

From Table V we can see that consistently, DRAM throughput
is the highest and is hence the bottleneck of the SpMV kernel.

Let us take a closer look at the exact memory access charac-
teristics to understand how the throughput of the kernel is
affected. From Table VI we can see that the number of DRAM
sectors loaded drastically decreases across our 5 implementa-
tions (Dense, CSR, ELLPACK, ELLWARP, EBW), with EBW
performing the least loads and stores of them all.

TABLE VI: DRAM ACCESS CHARACTERISTICS

Matrix DRAM DRAM DRAM DRAM

Sectors Sectors Sectors Sectors

Loaded Stored Stored Stored

(N = (N = (N = (N =

7.3k) 7.3k) 229k) 229k)
GPU-Dense 121.74M 22,539.5K N/A N/A
CSR 2.36M 259K 145.34M 860K
ELLPACK 40M 23.6K 17.02M 854K
ELLWARP .36M 22.5K 16.02M 980K
EBW 26M 7.6K 14.13M 529K

From Table VII, at large node counts, we can see that CSR
has the worst performance of all implementations because
it does not exploit any locality or coalesce any memory
accesses. It requests an average of 7.0 bytes per thread per
memory request, but 20.6 sectors (i.e. 660.7 bytes) is served
per request, i.e. over 99% of bytes served by the cache are
wasted and unused. Note that it is the only implementation
of the four which has a 1-D style memory layout; the SpMV
kernel indexes into each array randomly. On the other hand,
all the ELL variations store data in at least 2 dimensions and
is column-major to facilitate unit-strided access into the data
and index matrices.

We note that the L1 hit rate actually sharply decreases from
ELLWARP to EBW. This might be explained by the fact that
there is a larger working set since each thread has to compute
3 different sums as it is responsible for 3 rows. This working
set is still able to fit in the L2 cache, however. The reason for
the slight decrease from ELLPACK to ELLWARP might be
quite similar as well. Nevertheless, the much lower number of
L1 requests demonstrates a much better use of locality, and
is able to compensate for this decrease in hit rate.

TABLE VII: L1 ACCESS CHARACTERISTICS FOR N = 229k

Matrix L1 Sectors | L1 Load | L2 Sectors | L2 Load
Loaded Hit Rate Loaded Hit Rate
CSR 72.9TM 1.67% 80.08M 2.09%
ELLPACK 23.21M 9.80% 24.23M 35.12%
ELLWARP 22.90M 8.87% 24.60M 39.55%
EBW 18.64M 1.92% 21.52M 40.39%

Are we able to further optimize our implementation? Exam-
ining the source counts for our implementation of EBW, we

observe that 27% of warp stalls occur at reading from the
vector during SpMV. About 44% of sectors are excessively
accessed due to uncoalesced global accesses. Unfortunately,
due to the sparsity of the global stiffness matrix and the irreg-
ularity of the elements in each row, we doubt that we will be
able to further improve upon this performance. Since each row
of the matrix has a different, randomly distributed positioning
of the nonzero elements, it is dubious whether sorting the
array would allow us to alleviate this as a permutation which
may work well for one row could be extremely incompatible

with many other rows.

» e
&

GPU Modes - Time Breakdown by Phase

100

80 I

60,

10

) I I I
&, &, S,

> S SN)

Fig. 11: Runtime breakdown of each GPU matrix mode over small (N =
1149) and large (N = 229515) mesh sizes.

setup

update_boundary

solveu

-
BN update global k
|
|

postprocess

rercentage

S

%

Mode and Node Count

From Fig. 11, the set-up time also becomes a significant
proportion of the runtime even as the number of nodes
increase. We did not consider this as a priority to parallelize
on CUDA and this could also be explored as another avenue
for performance gains.

We believe that our choice of machine target (GPU) was sound
as the workload was ultimately memory-bound. GPU memory
bandwidths tend to be higher and are more optimized for
parallel operations on large datasets, which our graphs might
be suited for in general.

IV. WoRrk DISTRIBUTION

The credit is equally distributed.

Hong Lin
* Final report
* Mesh parsing
* ELL implementations
* Application of boundary conditions
¢ Benchmarking
Ryan Lau
* Final report
¢ Physical modelling
¢ Dense, CSR implementations
e Mesh generation
» Visualization, postprocessing

(1]

[2]

(3]

[4]

(3]

REFERENCES

“CIVL 8/7117 Finite Elements in Structural Mechanics Chapter 11
Notes.” Accessed: Apr. 29, 2025. [Online]. Available: https://www.ce.
memphis.edu/7117/notes/presentations/chapter_11.pdf

P. I. Kattan and P. I. Kattan, “The linear tetrahedral (solid) element,”
MATLAB Guide to Finite Elements: An Interactive Approach, pp. 329—
357, 2003.

“Boundary Conditions — FEM Tutorial 0.1.0 documenta-
tion.” Accessed: Apr. 29, 2025. [Online]. Available: https://ww
8central.ww.uni-erlangen.de/courses/fem101/fem/boundary_conditions.
html#dirichlet-boundary-conditions

M. Okereke, S. Keates, M. Okereke, and S. Keates, “Direct stiffness
method,” Finite Element Applications: A Practical Guide to the FEM
Process, pp. 47-106, 2018.

J. Wong, E. Kuhl, and E. Darve, “A new sparse matrix vector multipli-
cation graphics processing unit algorithm designed for finite element
problems,” International Journal for Numerical Methods in Engineering,
vol. 102, no. 12, pp. 1784-1814, 2015.

https://www.ce.memphis.edu/7117/notes/presentations/chapter_11.pdf
https://www.ce.memphis.edu/7117/notes/presentations/chapter_11.pdf
https://ww8central.ww.uni-erlangen.de/courses/fem101/fem/boundary_conditions.html#dirichlet-boundary-conditions
https://ww8central.ww.uni-erlangen.de/courses/fem101/fem/boundary_conditions.html#dirichlet-boundary-conditions
https://ww8central.ww.uni-erlangen.de/courses/fem101/fem/boundary_conditions.html#dirichlet-boundary-conditions

	Backgground
	Calculating the element local stiffness matrices
	Assembling the global stiffness matrix
	Applying boundary conditions
	Solving the global system
	Postprocessing

	Approach
	Dense matrix
	Compressed Sparse Row (CSR) matrix
	Ellpack matrix
	ELL-WARP
	EBW

	Results
	Analysis of Bottlenecks

	Work Distribution
	References

